Crosslinked Hydrophilic Membranes for Gas SeparationAn energy efficient process for the separation of gases by selectively permeable membranes The NeedTo counteract economic and environmental problems due to the burning of fossil fuels, society has placed an emphasis on development of renewable energy sources. Some of these renewable energy sources rely on the separation or removal of acid gases, such as carbon dioxide, hydrochloric acid, hydrogen sulfide, and hydrochloric acid from other gases. Current technology that separate gases isolate the absorption and desorption functions, which reduces the efficiency of the process. To create renewable energy sources that are competitive with nonrenewable resources, the separation and removal of acidic gases must be faster and more efficient. The TechnologyResearchers at The Ohio State University, led by Dr. W.S. Winston Ho, have developed selectively permeable membranes that separate and remove gaseous forms of carbon dioxide, hydrogen sulfide, and/or hydrochloric acid from other gases. This technology is superior to industry standards, such as aqueous amine absorption and molecular sieve adsorption, because it combines the steps of absorption and desorption of the gas to the permeable membrane. By combining these into one step, the membrane overcomes thermodynamic equilibrium and capacity limitation, resulting in an increased efficiency of the device. Commercial Applications
Benefits/Advantages
|
![]() Tech IDT2004-129 CollegeLicensing ManagerBartell, Cordellia InventorsCategoriesExternal Links |