# of Displayed Technologies: 4 / 4

Applied Category Filter (Click To Remove): Coatings


Method for Oil–Water Separation Using Nanoparticles and Binder
TS-037436 — A coating which repels oil and attracts water, creating a highly efficient separation technique.
Across numerous industries, such as oil and natural gas processing, liquid-repellent surfaces are often essential to product development, or even operational sustainability via equipment maintenance. Current liquid repellents are optimized to protect against all liquids, including oil and water (s…
  • College: College of Engineering (COE)
  • Inventors: Martin, Samuel; Bhushan, Bharat; Brown, Philip
  • Licensing Officer: Norris, Francis "Frank"

Method for Repellency of Surfactant-Containing Liquids Using Nanoparticles and Binder
TS-037423 — A surface coating which repels both oil and water.
Materials with a coating that repels both water and oil would be advantageous across a wide variety of industries and products. Benefits of this kind of coating could include anti­fouling, self-cleaning, and anti­smudging capabilities. While modern clear coats and paints do offer protectio…
  • College: College of Engineering (COE)
  • Inventors: Martin, Samuel; Bhushan, Bharat
  • Licensing Officer: Norris, Francis "Frank"

Nanoparticle and Long Fiber Reinforced Thermoset Nanocomposites
TS-037388 — A method to combine the advantages of both fiber reinforced plastics and polymer nanocomposites to produce a superior composite material.
Dispersion of nanoparticles into fiber reinforced plastics (FRPs) produces superior composites. Current methods face two problems: (1) best practices to disperse nanoparticles FRPs are not defined and (2) methods to maintain resin processability in the presence of nanoparticles are not understood.…
  • College: College of Engineering (COE)
  • Inventors: Lee, L James; Cao, Xia; Zhou, Gang
  • Licensing Officer: Norris, Francis "Frank"

Carbide bonded Graphene Coating
TS-015271 — A facile approach for obtaining carbide-bonded graphene coatings on a variety of metallic and nonmetallic substrates.
Despite the many attractive features of graphene, the lack of atomic bonds between graphene and substrates and among graphene nanosheets has limited its potential applications. Although theoretical considerations predict that covalent bonds between graphene nanosheets would significantly improve s…
  • College: College of Engineering (COE)
  • Inventors: Lee, L James; Huang, Wenyi; Yu, Jianfeng
  • Licensing Officer: Norris, Francis "Frank"

Loading icon