# of Displayed Technologies: 10 / 21

Applied Category Filter (Click To Remove): Nanomaterials


Nanoparticle Composition for Nucleic Acid Delivery
TS-044109 — Lipid nanoparticles (LNs) usable for the delivery of therapeutic compositions, including, but not limited to nucleic acids (NAs).
Nucleic Acid (NA) based therapies are used to inhibit gene expression. Lipid nanoparticles (LNs) are capable of carrying these therapies into cells. However, this delivery requires overcoming several physiological barriers. For instance, one barrier is the acidic endosome conditions within the cel…
  • College: College of Pharmacy
  • Inventors: Lee, Robert
  • Licensing Officer: Flammang, Ann Marie

RNA Nanotubes for Single Molecule Sensing and DNA/RNA/Protein Sequencing
TS-039514 — Stable, predictably ordered RNA nanopores for disease diagnosis and biopolymer sequencing.
New rapid and accurate sequencing methods, and disease detection methods are always in high demand. Newer advances in these areas include membrane-anchored structures and synthetics, which allow molecule idenfication and biopolymer sequencing by measuring conductance changes associated with passag…
  • College: College of Pharmacy
  • Inventors: Guo, Peixuan; Li, Hui; Wang, Shaoying
  • Licensing Officer: Flammang, Ann Marie

Nanopump Separation Device and Method
TS-037584 — A device for separating macromolecules in a solution of macromolecules having different molecular sizes
Many clinical and research applications involve separation of specific biological molecules, such as nucleic acids and proteins, for further analysis and characterization. A complex biological system can only be understood after each component has been separately analyzed, and proteins must be pur…
  • College: College of Engineering (COE)
  • Inventors: Hansford, Derek; Walczak, Robbie
  • Licensing Officer: Ezzell, Janel

Method for Oil–Water Separation Using Nanoparticles and Binder
TS-037436 — A coating which repels oil and attracts water, creating a highly efficient separation technique.
Across numerous industries, such as oil and natural gas processing, liquid-repellent surfaces are often essential to product development, or even operational sustainability via equipment maintenance. Current liquid repellents are optimized to protect against all liquids, including oil and water (s…
  • College: College of Engineering (COE)
  • Inventors: Martin, Samuel; Bhushan, Bharat; Brown, Philip
  • Licensing Officer: Norris, Francis "Frank"

Method for Repellency of Surfactant-Containing Liquids Using Nanoparticles and Binder
TS-037423 — A surface coating which repels both oil and water.
Materials with a coating that repels both water and oil would be advantageous across a wide variety of industries and products. Benefits of this kind of coating could include anti­fouling, self-cleaning, and anti­smudging capabilities. While modern clear coats and paints do offer protectio…
  • College: College of Engineering (COE)
  • Inventors: Martin, Samuel; Bhushan, Bharat
  • Licensing Officer: Norris, Francis "Frank"

Method for Producing Epitaxial Semiconductor Nanowire Heterostructures on Metal Foil
TS-037409 — Semiconductor nanowire LEDs grown directly on flexible metal foil.
The formation of dislocations in conventional thin film devices due to lattice mismatch strain restricts the choice of substrate and heterointerface. Nanowires can accommodate large strains due to their surface to volume ratio that permits large lattice mismatched heterostructures without dislocat…
  • College: College of Engineering (COE)
  • Inventors: Myers, Roberto; May, Brelon; Sarwar, A.T.M. Golam
  • Licensing Officer: Hong, Dongsung

Nanoparticle and Long Fiber Reinforced Thermoset Nanocomposites
TS-037388 — A method to combine the advantages of both fiber reinforced plastics and polymer nanocomposites to produce a superior composite material.
Dispersion of nanoparticles into fiber reinforced plastics (FRPs) produces superior composites. Current methods face two problems: (1) best practices to disperse nanoparticles FRPs are not defined and (2) methods to maintain resin processability in the presence of nanoparticles are not understood.…
  • College: College of Engineering (COE)
  • Inventors: Lee, L James; Cao, Xia; Zhou, Gang
  • Licensing Officer: Norris, Francis "Frank"

Synthesis and Foaming of Water Containing Activated Carbon-Nano/Microparticulate Polystyrene
TS-037386 — A novel method to increase thermal efficiency infrared absorption and bulk density of polystyrene foams.
Blowing agents create a cellular structure from a liquid plastic resin and, in certain cases, function as an insulating component of the foam. Hydrogen-containing chlorofluorocarbons and fluorocarbons are common blowing agents in the foam industry for extrusion forming of Polystyrene foam. However…
  • College: College of Engineering (COE)
  • Inventors: Lee, L James; Chiou, Nan-Rong; Yang, Jintao; Yeh, Shu Kai
  • Licensing Officer: Norris, Francis "Frank"

Fabrication of Nanopapers and Nanoparticle Reinforced Polymeric Composites Using Vacuum-Assisted Layer-by-Layer Spraying Technique
TS-037364 — A method to combine advantages of fiber-reinforced plastics and nanocomposites to produce a low-cost, superior lightweight material.
Nanomaterials, more specifically nanoparticle reinforced composites, are one of the best solutions for most lightweight applications. Due to the dispersion and high aspect ratio of nanoparticles, lightweight polymer nanocomposites exhibit dimensional stability, heat and flame resistance, barrier p…
  • College: College of Engineering (COE)
  • Inventors: Lee, L James; Guerra, Dante; Min, Yong Gang; Movva, Siva
  • Licensing Officer: Norris, Francis "Frank"

Porous Thermoelectric Materials
TS-037351 — A formulation to increase the efficiency of thermoelectric materials by reducing density.
Thermoelectric effects enable direct conversion of thermal to electrical energy, which provides an alternative power generation and temperature conditioning. Although thermoelectric systems are environmentally friendly, the efficiency of thermoelectric devices cannot compete with current gold-stan…
  • College: College of Engineering (COE)
  • Inventors: Heremans, Joseph; Jaworski, Christopher
  • Licensing Officer: Gooray, Arthur "Art"

Show More Technologies

Loading icon